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1.0 INTRODUCTION 

1.1 Overview and Objectives 

Assessment of natural recovery mechanisms to guide sediment site management strategies has traditionally 

focused on physical and chemical attenuation processes (e.g., burial, dilution, precipitation, adsorption, 

volatilization, hydrolysis). While physical and chemical processes are important for risk reduction and natural 

recovery, biologically-mediated attenuation processes (i.e., biodegradation and biotransformation1) can play a 

substantial role in governing natural recovery mechanisms (ESTCP, 2009) and are appropriate to be considered 

as a remedial alternative. The limited or absent assessment of biological attenuation processes in many 

contaminant sediment site investigations leads to uncertainties regarding contaminant fate (ITRC, 2013). This is 

not to say that sediment practitioners do not recognize the importance of biologically-mediated processes on 

contaminant fate, but that application of technologies to directly assess these processes are not traditionally 

performed. Rather, biological processes are typically inferred through contaminant trends, biogeochemical 

conditions, or chemical forensics, introducing uncertainties in the conclusions reached and project decisions 

informed by these conclusions (Lawson et al., 2019; Rittmann and McCarty, 2020; Magar and Wenning, 2006; 

Murphy and Morrison, 2007; Stout et al., 2001, 2004). Decades of laboratory and field studies have shown that 

microorganisms indigenous to the subsurface can biodegrade or biotransform a variety of contaminants, including 

petroleum hydrocarbons, chlorinated solvents, munitions, pesticides, PCBs, heavy metals (e.g., mercury, arsenic, 

chromium, etc.) and many other compounds (Bombach et al., 2010; Bouwer & Zehnder 1993; Wiedemeier et al., 

1999). 

Due to the technical advances and reduced costs with molecular biological tools (MBTs), such as quantitative 

polymerase chain reaction (qPCR), microbial-mediated contaminant attenuation of sediment contaminants can 

now be measured rather than relying on conceptualizations or inferences. While these tools have been applied at 

upland sites with increasing regularity, far fewer case studies or applications at contaminated sediment sites are 

cited in the literature. 

This white paper presents an overview of the scientific basis for MBTs, applications to date, and how MBTs may 

be applied to advance sediment site characterization, reduce uncertainties related to biodegradation and 

biotransformation, aid in discussions with regulators/stakeholders, and guide remedial decision-making to 

advance a project towards cleanup or closure. An assessment of the state of knowledge and practice for 

application of MBTs to key contaminants at sediments is presented.  

1.2 Molecular Biological Tools (MBTs) 

Biological analytical techniques, collectively termed MBTs, are available to environmental practitioners to facilitate 

the identification, contaminant-degrading capabilities, and activities of microorganisms present in the environment. 

Over just the past two decades, MBTs have improved understanding of biotic attenuation processes and thereby 

decreased uncertainties of effectiveness, giving stakeholders greater confidence in making management 

decisions at upland sites (Beller et al., 2002; Cupples, 2008; Madsen, 2000; Wilson et al., 1999; Winderl et al., 

2007). MBTs consists of assays to assess microbial biomolecules (e.g., DNA, RNA, phospholipids) or stable 

isotopes indicative of biotransformation, and can complement traditional data by providing direct measurement of 

                                                      

1 For the purposes of this white paper biodegradation will be used strictly to mean complete mineralization to CO2 and H2O, 

whereas biotransformation means yield organic metabolites that may or may not be able to be further transformed (Kiel and 

Engesser, 2015). 



  

 

 

 
 5 

 

the presence or activity of contaminant-degrading microorganisms and their biodegradation/biotransformation 

processes.  

MBTs can be further grouped as genetic- (or nucleic acid-) based tools or isotope-based tools. 

1.2.1 Genetic- or Nucleic Acid-Based Tools 

Nucleic acid-based tools are analyses that probe the genetics of microorganisms including deoxyribonucleic acids 

(DNA) and ribonucleic acids (RNA). These tools are used to detect or quantify genes associated with 

microorganisms. These tools can be designed to target specific functional genes that encode enzymes implicated 

in contaminant biodegradation or can be applied in a non-targeted approach to assess the composition of the 

microbial community.  

Polymerase Chain Reaction (PCR) 

What it is: a laboratory method used to make copies of a specific DNA segment extracted from an 

environmental sample or microbial culture to identify specific organisms and functional genes.    

Example application: In PCR reactions, a target gene in a sample is located using short segments of DNA 

called primers. Many copies of the target gene are then generated.  

Quantitative Polymerase Chain Reaction (PCR) 

What it is: a laboratory analytical technique for quantification of a target gene based on DNA PCR 

technology.  

Example application: Detect and quantify the presence of a specific gene(s) to assess the presence and 

abundance of contaminant-degrading microorganisms or functional genes. The abundance of the genes 

can be monitored over space and time.  

Reverse Transcriptase qPCR (RT-qPCR) 

What it is: a laboratory analytical technique for quantification of an expressed target gene based on 

complementary DNA (cDNA) transcribed from RNA that indicates if microorganisms are actively 

expressing specific genes. 

Example application: While qPCR quantifies the DNA of genes having the potential to biodegrade 

contaminants, the genes may be present but not expressed. RT-qPCR can assess the degree to which 

genes associated with contaminant biodegradation are being actively expressed. 

Next Generation Sequencing (NGS) targeting 16S rRNA genes  

What it is: a DNA sequencing technology that identifies the presence and relative abundance of 

microorganisms in environmental samples. NGS targeting 16S rRNA genes is used to evaluate and 

identify prokaryotes (bacteria and archaea).  

Example application: DNA sequencing is useful when the identities of microorganisms responsible for 

contaminant biodegradation or biotransformation at a site are unknown. 

At present, MBTs based on nucleic acids are not covered by USEPA, ASTM, or other standards. As such, there is 

variability in methods that have been applied in different laboratories. The lack of method standardization may 

complicate comparisons between studies and between sites. It should also be noted that as new information from 

research findings becomes available, it may be necessary to reevaluate conclusions from previous analyses. Data 
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interpretation and reinterpretation requires that assays are standardized or information about assays be fully 

documented by service providers. In the case of PCR, qPCR, and RT-qPCR, this includes documenting the 

sequences of primers, probes, thermal programs, and reaction chemistry. At the time of this white paper 

development, an ASTM Standard is being developed to standardize the application and methods of gene-based 

MBTs. 

1.2.2 Isotope-Based Tools 

Isotope-based tools are analytical methods that measure stable isotope levels as evidence of biodegradation or 

biotransformation of a specific contaminant. These methods may be employed to measure isotope ratios (e.g., 
13C:12C normalized to a standard carbonate mineral, Pee Dee Belemnite) or track isotope fate.  

Compound Specific Isotope Analysis (CSIA)  

What it is: an analytical method that determines the ratio of naturally occurring stable isotopes of select 

elements (typically 13C/12C, 2H/1H, or 37Cl/35Cl) in a particular compound following separation from other 

compounds in a sample matrix. 

Example application: For some compounds, the ratio of 13C/12C, 2H/1H, and/or 37Cl/35Cl can serve to 

differentiate biotic and abiotic reactions and can serve to demonstrate a dominant fate process. 

Stable Isotope Probing (SIP)  

What it is: a method which uses synthetic 13C‐labeled contaminant of interest, called a stable isotope 

probe. Methods track the environmental fate of a 13C-labeled contaminant. 

Example application: Recovery of 13C in the form of 13CO2 or 13C‐labeled DNA or phospholipids can 

provide proof that microbes indigenous to a site have the capacity to transform a contaminant. Methods to 

identify 13C-labeled DNA segments can allow identification of degrading microbes when the contaminant 

is assimilated as a carbon source. 

 

2.0 APPLICABILITY OF MBTS TO CONTAMINATED SEDIMENT 
MANAGEMENT 

2.1 Successful MBTs Application at Upland Sites 

For some pollutants, the application of MBTs has become well established to complement traditional site 

characterization parameters (e.g., measurement of contaminant concentrations and geochemical parameters) in 

remedy selection, and performance monitoring at upland sites (Beller et al., 2002; Cupples, 2008; Madsen, 2000; 

Wilson et al., 1999; Winderl et al., 2007). Several publications and guidance documents have been written to 

present the advantages of employing MBTs at upland sites in concert with traditional analyses to reduce 

attenuation uncertainties and better characterize subsurface microbiology (Amos et al., 2008; Bombach et al., 

2010; Bouchard et al., 2018; Busch-Harris et al., 2008; Lawson et al., 2019; Rittmann & McCarty, 2020; Zhang et 

al., 2016). MBTs have been applied as complementary tools at each stage of the contaminated upland site project 

lifecycle as an additional line of evidence to: (a) develop or refine biogeochemical processes within the conceptual 

site model (CSM) (b) reduce uncertainty of biological processes associated with remedy design, (c) monitor 

remedy performance and differentiate biological processes from chemical or physical processes, and (d) support 

communications with stakeholders (ITRC, 2013). 
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2.2 Application of MBTs to Sediment Sites to Minimize Uncertainty 

Sediment environments are generally complex settings where physical, chemical and biological processes 

interact to directly or indirectly affect contaminant fate and transport and exposure risk to potential receptors. 

Because of these complexities, cleanup considerations for sediment sites should be based on multiple lines of 

analyses and characterizations that develop the basis of a sound conceptual site model (CSM). Key to developing 

this understanding is knowledge of how natural processes influence the natural recovery of contaminated 

sediments. Further, with the increased focus on in-place sediment management approaches by regulators and 

industry, natural recovery (i.e., Monitored Natural Recovery [MNR]) or combined approaches that integrate MNR 

with capping, dredging, or technologies to accelerate natural recovery are remedy approaches for managing long-

term environmental risk. 

Published literature and guidance from federal agencies (e.g., USDoD, USEPA) consistently recognize that the 

appropriateness, effectiveness, and permanence of natural recovery as a stand-alone or component of the 

remedy should be evaluated using multiple lines of evidence to minimize uncertainties to the extent possible 

(consistent with Section 4.4 of USEPA’s Contaminated Sediment Remediation Guidance for Hazardous Waste 

Sites [USEPA, 2005]). While empirical measurements of physical natural recovery processes are collected to 

develop conclusions, when biological attenuation processes in sediment environments are evaluated, 

contaminant biodegradation/biotransformation is usually inferred based on a limited suite of biogeochemical 

parameters and/or contaminant trends. This can result in uncertainty in determining the occurrence and effect of 

biodegradation/biotransformation related to natural recovery timeframes. As a result, these large uncertainty 

bounds can minimize predicted natural recovery performance trajectories or result in the omission of 

biodegradation/biotransformation during remedy selection and can result in an overly conservative remedial 

strategy. 

While application of MBTs at upland sites has become more common, MBT applications to assess microbiological 

processes at sediments sites by the sediment cleanup community has not expanded substantially beyond focused 

research and development applications2 for reasons unclear to the authors. Application of MBTs to sediments 

have the potential to provide supplementary empirical data to reduce uncertainty related to contaminant fate and 

biodegradation by: 

 Assessing presence and abundance of microorganisms capable of degrading contaminants 

 Assessing contaminant degrading activity of microorganisms 

 Assessing occurrence of contaminant biodegradation/biotransformation pathway(s)  

 

                                                      

2 Example applications include qPCR analyses to assess the mercury methylation (Podar et al. 2015) and microbial transformations of heavy 
metals (Sun et al. 2021). 
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3.0 REVIEW OF STATE OF KNOWLEDGE AND STATE OF PRACTICE ON 
BIODEGRADATION OF CHLORINATED ETHENES, PCBS, AND PAHS 

3.1 Scope 

Because successful application of MBTs has been demonstrated at upland sites and industry standardization 

efforts are underway3, there is an opportunity to develop similar strategies for applying MBTs at sediment sites. 

To assess this opportunity specific to sediment sites, a literature review was performed to assess the state of 

knowledge and practice for application of MBTs to key sediment contaminants. This search aimed to identify 

which target contaminant(s) can be utilized in future applied research to demonstrate the application of MBTs to 

assess microbial degradation in sediments. As part of this review, the Contaminants of Concern (COCs) for 

consideration4 included: 

 Chlorinated Volatile Organic Compounds (CVOCs), specifically chlorinated ethenes  

 Polychlorinated Biphenyls (PCBs)  

 Polycyclic Aromatic Hydrocarbons (PAHs), specifically naphthalene and methylnaphthalenes 

As part of the literature review, evaluation of each COC was conducted to assess the current state of knowledge 

of biodegradation to identify a COC recommended for focus during potential, future applied research applications 

of MBTs. The key considerations used to screen each COC include: 

 Are biodegradation or biotransformation pathways established? 

 Have sediment and/or porewater laboratory-scale biodegradation studies (e.g., microcosms, columns) been 

documented? 

 Are MBTs established to monitor biodegradation or biotransformation in sediments at laboratory-scale or 

field-scale? 

A summary of the literature review for each COC suite is provided in the following sections and associated 

summary tables.  

3.2 Chlorinated Ethenes 

3.2.1 Lab-Scale Biotransformation Studies & Associated Pathways 

Under aerobic conditions, TCE, cis-1,2-DCE, and vinyl chloride can be cometabolically5 transformed by bacteria 

that grow on a variety of hydrocarbons including methane, ethene, propane, and toluene through processes 

employing mono- or dioxygenase enzymes (McCarty et al., 1998; Mattes et al., 2010). The intermediate products 

can vary depending on the primary substrate and microorganism. For example, toluene 2-monooxygenase from 

Burkholderia cepacia G4 and soluble methane monooxygenase from Methylosinus trichosporium OB3b both 

transform TCE to the unstable intermediate TCE epoxide which undergoes spontaneous reactions to form 

                                                      

3 An ASTM work group is currently drafting a guide for application of MBTs at contaminated sites to promote standardization of applications, 
data evaluation, sampling and laboratory procedures, data quality, and data usability.  

4 Additional COCs identified as less appropriate for immediate consideration but suggested for future consideration included heavy metals 
(mercury, lead, copper), pesticides (DDTx, BHC), and dioxins and furans. 

5 Cometabolic biodegradation is a non-growth linked process that occurs when microorganisms are utilizing other substrates 

for metabolic energy gain and growth and produced enzymes fortuitously degrade the contaminant. 
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glyoxylic and formic acids and carbon monoxide (Fox et al., 1990; Newman and Wackett, 1997). The latter 

enzyme also leads to minor production of chloral (trichloacetaldehyde) and dichloroacetate not detected for the 

former (Fox et al., 1990). Regardless, the various intermediates can be further oxidized under aerobic conditions 

(ultimately to CO2, water, and chloride). Isolates from some bacterial species (e.g., Mycobacterium, 

Pseudomonas, Nocardioides, Ochrobactrum, and Ralstonia) are able to use vinyl chloride as a carbon and energy 

source under aerobic conditions (Hartmans and de Bont, 1992; Coleman et al., 2002; Danko et al., 2004; Elango 

et al., 2006). 

The pathway for anaerobic biotransformation of tetrachloroethene (PCE) has been extensively studied with 

intermediates unambiguously determined (Maymó-Gatell et al., 1997). Bacteria belonging to a variety of genera 

can sequentially dehalogenate PCE to trichloroethene (TCE), cis-1,2-dichloroethene (cis-1,2-DCE) or trans-1,2-

dichloroethene (trans-1,2-DCE), and vinyl chloride (Table 1). The halogenated compounds serve as terminal 

electron acceptors and carbon is not assimilated. Strains from only two genera, Dehalococcoides and 

Dehalogenimonas, are known to carry out dechlorination of the carcinogen vinyl chloride to the non-toxic final 

product ethene (Maymó-Gatell et al., 1997; Löffler et al., 2013; Yang et al., 2017). Because these genera are not 

known to grow in the absence of halogenated organic compounds, their presence is indicative of the metabolic 

potential to transform halogenated organics.  

Table 1: Bacterial 16S rRNA genes targeted by MBTs for chlorinated ethenes (anaerobic) 

Genus Relevance References 

Dehalococcoides Reductively dechlorinates PCE, TCE, all DCE isomers, 

vinyl chloride 

Löffler et al. (2000); 

Hendrickson et al. 

(2002); Dennis et al. 

(2003); Duhamel et al. 

(2004); Cupples (2008) 

Dehalogenimonas Dechlorination of trans-1,2-DCE to  vinyl chloride and  

vinyl chloride to ethene 

Yang et al. (2017); 

Molenda et al. (2016); 

Moe et al. (2009); Yan 

et al. (2009); Chen et 

al. (2014) 

Dehalobacter Partial dechlorination of PCE and TCE to cis-1,2-DCE Holliger et al. (1998), 

Maillard et al. (2003) 

Desulfuromonas Partial dechlorination of PCE to cis-1,2-DCE Sung et al. (2003) 

Geobacter Partial dechlorination of PCE to cis-1,2-DCE Sung et al. (2006a) 

Desulfiltobacterium Partial dechlorination of PCE and TCE to cis-1,2-DCE Gerritse et al. (1996) 

 

A variety of laboratory-scale enrichment cultures and column studies have demonstrated anaerobic 

dehalogenation of chlorinated ethenes by bacteria in freshwater sediments (De Bruin et al., 1992; Qiu et al., 

2020), brackish sediments (Aulenta et al. 2002), and marine sediments (Kittelmann & Friedrich, 2008; Futagami et 

al., 2013; Matturro et al. 2016).  
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3.2.2 Established MBTs  

MBTs targeting non-specific oxygenases that can cometabolically transform TCE and lower chlorinated alkenes 

under aerobic conditions have been developed (Table 2). Rate constants calculated based on qPCR assays 

have been found to correlate with rate constants derived from 14C assays (Wilson et al., 2019); though additional 

work is being performed to assess applications to assess rates at field-scale. MBTs targeting genes associated 

with vinyl chloride assimilation (etnC and etnE) have also been developed (Table 2). 

Table 2: Functional genes targeted by nucleic-acid based MBTs for aerobic cometabolism or utilization of chlorinated 
ethenes 

Gene / 

Symbol  

Function  References  

mmoX  Subunit of soluble methane monooxygenase  Paszczynski et al. (2011); 

Tentori and Richardson (2020)  

prmA Subunit of propane monooxygenase Sharp et al. (2007) 

TOD  Toluene dioxygenase   Baldwin et al. (2003)  

RMO  Toluene monooxygenase  Baldwin et al. (2003)  

RDG  Toluene monooxygenase  Baldwin et al. (2003)  

etnC subunit of alkene monooxygenase  Coleman and Spain (2003); Jin 

and Mattes (2010, 2011) 

etnE subunit of epoxyalkane:coenzyme M 

transferase (EaCoMT)  

Coleman and Spain (2003); Jin 

and Mattes (2010, 2011) 

 

PCR and qPCR methods for detection and enumeration of bacterial genera known to participate in the anaerobic 

reductive dechlorination process are well established (Table 1) and have been widely applied to aid in decision 

making for contaminated soil and groundwater (Fennell et al., 2001; Major et al., 2002). Dehalococcoides 

concentrations on the order of 104 16S rRNA gene copies per mL groundwater and higher have been proposed 

as leading to dechlorination rates at the field-scale that are greater than a “generally useful” rate of 0.3 per year 

(Lu et al., 2006). For sites with lower concentrations, bioaugmentation and/or biostimulation may be more 

appropriate than MNA. 

Three distinct genes encoding enzymes that catalyze dechlorination of vinyl chloride to ethene have been 

identified to date, two from Dehalococcoides (vcrA and bvcA) and one from Dehalogenimonas (cerA). PCR and 

qPCR methods for the detection of these functional genes have been developed (Table 3). Application of PCR 

and qPCR targeting genes for vinyl chloride dehalogenation as well as genes encoding upper portions of the PCE 

dechlorination pathway (Table 1) are routinely assayed. 

Table 3: Functional genes targeted by nucleic-acid based MBTs for chlorinated ethenes (anaerobic pathways) 

Gene Function References 

tceA Trichloroethene reductive dehalogenase  Magnuson et al. (2000) 
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bvcA Vinyl chloride reductase (BAV1) Krajmalnik-Brown et al. 

(2004) 

vcrA Vinyl chloride reductase (VS) Holmes et al. (2006) 

cerA Vinyl chloride reductase (GP) Yang et al. (2017) 

TdrA Trans-1,2-Dichloroethene reductase Molenda et al. (2016) 

 

Stable isotope fractionation patterns have been applied for chlorinated alkenes transformed under aerobic and 

anaerobic conditions (Hirschorn et al., 2007; Fletcher et al., 2011; Schmidt et al. 2014; Franke et al., 2020). 

3.3 Polychlorinated Biphenyls (PCBs) 

3.3.1 Lab-Scale Biotransformation & Associated Pathways 

Under aerobic conditions, several bacteria have the ability to grow using PCB congeners with one or two 

chlorines as sole sources of carbon and energy (Masse et al., 1984; Furukawa and Miyazaki, 1986; Abramowicz, 

1990). Also under aerobic conditions, several bacteria are capable of cometabolizing lower chlorinated PCBs 

when provided with biphenyl as the primary substrate. Cometabolizing strains include a diverse assortment of 

both Gram positive and negative genera including Acinetobacter, Alcaligenes, Achromobacter, Burkholderia, 

Comamonas, Corynebacterium, Pseudomonas, Ralstonia, Rhodococcus, Sinorhizobium and Sphingomonas 

(Furukawa, 2000; Pieper, 2005; Field and Sierra-Alvarez, 2008; Tu et al., 2011). Isolates vary with regard to the 

type and extent of PCB congeners metabolized, with some strains having a narrow spectrum and others able to 

transform a broader range of congeners. In the case of aerobic biodegradation and cometabolic biotransformation 

of lower chlorinated PCBs, the best characterized pathway is the php pathway which is initiated by the enzyme 

biphenyl-2,3-dioxygenase (Masse et al., 1984; Erb & Wagner-Döbler, 1993; Furukawa, 2000; Pieper, 2005; Field 

and Sierra-Alvarez, 2008). Depending on the number and position of chlorine substituents, a variety of products 

may be formed, some of which are relatively recalcitrant and others of which can be mineralized (Pieper, 2005). 

The pathways for anaerobic biotransformation of polychlorinated biphenyls (PCBs) have been extensively 

studied. A variety of isolates from the genus Dehalococcoides have been unequivocally demonstrated to 

reductively dechlorinate PCBs in processes that replace chlorine with hydrogen on the biphenyl ring. The isolates 

markedly differ with respect to which of the 209 possible congeners they are able to dehalogenate, and because 

chlorines may be removed from meta or para positions, the final dechlorination products can vary between strains 

(Fennell et al., 2004; Adrian et al., 2009; LaRoe et al., 2014; Wang et al., 2014, 2015). Commercial PCB mixtures 

are dechlorinated to a variety of lower chlorinated PCBs. In addition to Dehalococcoides, an anaerobic bacterial 

strain referred to as “Dehalobium chlorocoercia” strain DF-1 has been demonstrated to utilize some doubly 

flanked PCB congeners as the sole electron acceptor, for example, dechlorinating 2,3,4,5-tetrachlorobiphenyl to 

2,3,5-trichlorobiphenyl (Wu et al., 2000; May et al. 2008; Lombard et al., 2014). Though not yet demonstrated in 

pure cultures, a combination studies indicate that representatives from the genera Dehalogenimonas (Wang and 

He, 2013a; Liang et al., 2015; Xu et al., 2022) and Dehalobacter (Yan et al., 2006a; Yoshida et al., 2009, Wang 

and He, 2013b) can also dechlorinate higher chlorinated PCBs to less chlorinated PCBs (Table 4).    
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Table 4: Bacterial 16S rRNA genes targeted by MBTs for PCBs (anaerobic) 

Genus Relevance References 

Dehalococcoides Dechlorinates some PCB congeners Löffler et al. (2000); Hendrickson et al. 

(2002); Dennis et al. (2003); Duhamel et 

al. (2004); Cupples (2008) 

Dehalogenimonas Dechlorinates some PCB congeners Yang et al. (2017); Molenda et al. (2016); 

Moe et al. (2009); Yan et al. (2009); 

Chen et al. (2014) 

Dehalobacter Dechlorinates some PCB congeners Holliger et al. (1998); Maillard et al. 

(2003) 

 

Laboratory studies have demonstrated aerobic biodegradation of lower chlorinated PCBs in river sediments 

(Williams & May, 1997; Sul et al., 2009). Several studies have also documented anaerobic dechlorination of 

higher chlorinated PCBs in microcosms and enrichment cultures derived using freshwater sediments (Liang et al., 

2014; Yan et al., 2006a,b; Ewald et al., 2020; Xu et al., 2022) and marine sediments (Fava et al., 2003; Yan et al., 

2006b; Nuzzo et al., 2017). 

3.3.2 Established MBTs  

Nucleic acid-based methods targeting genes segments encoding enzymes for the aerobic PCB biodegradation 

pathway (Table 5) have been applied to quantify or characterize aerobic PCB degradation in laboratory 

enrichments and environmental samples. 

Table 5: Functional genes targeted by nucleic-acid based MBTs for aerobic PCB transformation 

Gene  Function  References  

bphA biphenyl-2,3-dioxygenase Hoostal et al. (2002); 

Demnerová et al. (2005); 

Petrić et al. (2011); Zubrova 

et al. (2021) 

bhpC 2,3-dihydroxybiphenyldioxygenase Erb and Wagner-Döbler 

(1993); Cao et al. (2021) 

 

Nucleic-acid-based tools targeting 16S rRNA gene sequences unique to the anaerobic genera Dehalococcoides, 

Dehalogenimonas, and Dehalobacter (Table 4) are well established. Dehalococcoides and Dehalogenimonas 

phylotypes present in anaerobic cultures reductively dechlorinating PCBs reported to date contain large numbers 

of putative reductive dehalogenase encoding genes. Further research is needed to characterize the specific 

functional roles that these play. Nevertheless, there are a growing number of genes that have been implicated in 

PCB dechlorination reactions (Table 6), and nucleic acid based MBTs targeting these genes have been applied in 

a limited number of cases for enrichment cultures established using marine sediments (e.g., La Spezia harbor, 
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Italy) and freshwater sediments (e.g., Taihu Lake, China), with increased gene expression correlating with PCB 

dechlorination (Matturro et al. 2016a; Xu et al., 2022). 

Table 6: Functional genes targeted by nucleic-acid based MBTs for anaerobic PCB transformation 

Gene  Function  References  

ardA Reductive dehalogenase Xu et al. (2022) 

rdh12 PCB reductive dehalogenase Park et al. (2011); Xu et al. (2022) 

pcbA1 PCB reductive dehalogenase Wang et al. (2014); Matturro et al. (2016a); Xu et al. 

(2022) 

pcbA4 PCB reductive dehalogenase Wang et al. (2014); Matturro et al. (2016a); Chen and 

He (2018); Xu et al. (2022) 

pcbA5 PCB reductive dehalogenase Wang et al. (2014); Matturro et al. (2016a); Xu et al. 

(2022) 

SKFPat9 DF1 reductive dehalogenase Payne et al. (2013) 

 

SIP using 13C-labeled PCBs has allowed identification of PCB degrading bacteria in aerobic systems through 

incorporation of the 13C label into phospholipids and DNA (Tillmann et al., 2005; Leigh et al., 2007).  

3.4 Polycyclic Aromatic Hydrocarbons (PAHs) 

3.4.1 Lab-Scale Biotransformation & Associated Pathways 

Under aerobic conditions, numerous bacterial species are capable of transforming two-, three-, and four-ring 

PAHs to non-toxic end products such as water and carbon dioxide (i.e., PAH mineralization) and partially 

degrading five- and six-ring PAHs to intermediate compounds (Cerniglia, 1992). Naphthalene is the simplest 

structure PAH (two-ring) and has broadly served as a model compound to study metabolic pathways, enzymes, 

and their regulation (Phale et al., 2020). Aerobic naphthalene degradation pathways and their enzymes have 

been extensively studied in mesophilic bacteria including Pseudomonas species. Based on enzyme induction and 

regulation studies, the naphthalene degradation pathway is segmented into upper pathway (naphthalene to 

salicylate, nah operon) and lower pathway (salicylate to central carbon pathway either via catechol, sal operon or 

gentisate, gen/sgp operon) (Phale et al. 2019; Miyazawa et al., 2020). These operons are induced by salicylic 

acid and its analogues (Shamsuzzaman & Barnsley 1974; Park et al., 2002). Both the upper pathway and lower 

pathway include multiple intermediates. The initial step of aerobic naphthalene biodegradation upper pathway is 

the addition of dioxygen to naphthalene by the multimeric enzyme naphthalene 1,2-dioxygenase (NahA) (Eaton 

and Chapman, 1992). Aerobic degradation pathways have been elucidated for many other PAHs, with initial 

reactions involving mono-or di-oxygenation (Schneider et al., 1996; Krivobok et al., 2003; Payne et al., 2013). 

Under anaerobic conditions, degradation of two- and three-ring PAHs has been documented under nitrate 

(Mihelcic and Luthy, 1988; McNally et al., 1998; Rockne and Strand, 1998; Zhang et al., 2020), iron (Coates et al., 

1996b; Anderson &, Lovley, 1999), sulfate-reducing (Coates et al., 1996a,b; Mueller et al., 1989; Meckenstock et 

al., 2000; Kummel et al., 2015), and methanogenic conditions (Chang et al., 2006; Toth et al., 2018). Although 

mineralization has been demonstrated in many cases, anaerobic pure culture isolates are limited (Table 7), and 
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full pathways for biodegradation with unequivocal identification of intermediates (and responsible enzymes) are 

lacking. The initial step in the anaerobic naphthalene pathway for sulfate reducing Deltaproteobacteria strains 

NaphS2, NaphS3, and NaphS6 involves carboxylation (Meckenstock and Mouttaki, 2011; Mouttaki et al., 2012; 

Meckenstock et al., 2016), as does the initial step in transformation of phenanthrene by the sulfate reducing 

Geobacter sulfurreducens PheS2 (Zhang et al., 2021b) and strain PheS1 (Zhang et al., 2021a). The initial step in 

the anaerobic degradation of 2-methylnapthalene is activated by the addition of fumarate (Meckenstock et al., 

2004; Selesi et al., 2010). Aside from the recently reported anaerobic transformation of benz[a]anthracene (Zhang 

et al., 2021a,b), anaerobic degradation of PAHs has generally been limited to PAHs with two or three rings 

(Himmelberg et al., 2018). 

Table 7: Pure cultures capable of anaerobic PAH degradation 

Bacterium Substrates References 

Deltaproteobacteria strain NaphS2 Naphthalene  

2-Methylnaphthalene 

Galushko et al. (1999) 

Deltaproteobacteria strain NaphS3 Naphthalene  

2-Methylnaphthalene 

Musat et al. (2009) 

Deltaproteobacteria strain NaphS6 Naphthalene 

2-Methylnaphthalene 

Musat et al. (2009) 

Strain PheS1 Naphthalene 

Phenanthrene 

Anthracene 

Benz[a]anthracene 

Zhang et al. (2021a) 

Geobacter sulfurreducens strain PheS2 Naphthalene 

Phenanthrene 

Anthracene 

Benz[a]anthracene 

Zhang et al. (2021b) 

Achromobacter denitrificans strain PheN1 Phenanthrene Zhang et al. (2020) 

 

Multiple laboratory-scale studies demonstrating biodegradation of naphthalene and other PAHs have been 

reported in enrichment cultures derived from freshwater and marine sediments. These include aerobic 

biodegradation as well as biodegradation under nitrate-reducing (Langenhoff et al., 1996; Rockne and Strand, 

1998, 2001; Lu et al., 2012; Dou et al. 2009), sulfate-reducing conditions (Langenhoff et al. 1996; Coates et al. 

1996a,b; Zhang and Young, 1997; Rockne and Strand, 1998; Galushko et al., 1999; Rothermich et al., 2002; Lu 

et al., 2012) and methanogenic conditions (Chang et al., 2006; Li et al., 2015). 

3.4.2 Established MBTs 

A variety of PCR and qPCR methods have been developed to detect and quantify concentrations of nahAc gene 

which codes for a subunit of naphthalene 1,2-dioxygenase which initiates the first step of aerobic naphthalene 

biodegradation (Mawad et al. 2020; Park and Crowley, 2006; Salminen et al., 2008; Tuomi et al., 2004; Cébron et 

al., 2008; Iwai et al., 2011). Multiple studies have reported a positive correlation between the abundance of nahAc 

gene copies and degradation of naphthalene under aerobic conditions (Tuomi et al., 2004; Nyyssönen et al. 

2006; Salminen et al., 2008). In addition to initiating aerobic naphthalene metabolism in bacteria, naphthalene 
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dioxygenase has many other catalytic abilities, allowing biotransformation of several additional PAHs including 

anthracene, phenanthrene, acenaphthylene, and fluorene (Jerina et al., 1976; Resnick and Gibson, 1996a, 

1996b; Selifonov et al., 1996). As such, nucleic acid-based MBTs targeting the nahAc gene may also serve as a 

general indication of the metabolic potential for transforming additional PAHs. 

PCR primers targeting dioxygenases that act on higher molecular weight PAHs, notably the nidA gene which 

encodes the large subunit of a dioxygenase that acts on pyrene and phenanthrene (Khan et al., 2001; Stingley et 

al., 2004), have also been developed and applied to environmental samples (DeBruyn et al, 2007; Peng et al., 

2010). Previous studies have found the degradation of pyrene is usually positively related to the abundance and 

expression of nidA (Zhou et al. 2008; Peng et al., 2010). More general PCR primers targeting genes that encode 

the alpha subunit of the PAH-ring hydroxylating dioxygenases involved in the initial step of the aerobic metabolism 

of PAHs in Gram positive and Gram negative bacteria have also been established (Cébron et al., 2008). PCR 

primers targeting the pahE gene which codes for a later transformation step in the aerobic upper PAH 

biodegradation pathway have also been reported (Table 8). 

Table 8: Functional genes targeted by nucleic-acid based MBTs for aerobic naphthalene and other PAH 
biodegradation 

Gene targets Function References 

nahAc Subunit of naphthalene-1,2-dioxygenase Mawad et al. (2020); Park 

and Crowley (2006); 

Salminen et al. (2008); Tuomi 

et al., (2004) 

PAH-RDHα GN PAH-ring hydroxylating dioxygenases of Gram 

negative bacteria  

Cébron et al. (2008) 

PAH-RDHα GP PAH-ring hydroxylating dioxygenases of Gram 

positive bacteria  

Cébron et al. (2008) 

nidA PAH-ring hydroxylating dioxygenase that acts 

on pyrene and phenanthrene 

DeBruyn et al. (2007); Peng 

et al. (2010) 

pahE PAH hydratase-aldolase Liang et al. (2019) 

 

As noted above, anaerobic transformation pathways for PAHs are much less well characterized than aerobic 
pathways. Consequently, nucleic acid-based MBTs are relatively limited (Table 9). PCR primers and methods for 
targeting the napthoyl-CoA reductase (initiates a first step in anaerobic naphthalene biodegradation) and naphthl-
2-methylsuccinate synthase (which initiates transformation of methylnaphthalene) have been developed (Morris et 
al., 2014; von Netzer et al., 2013).   
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Table 9: Functional genes targeted by nucleic-acid based MBTs for anaerobic naphthalene biodegradation 

Gene Function References 

ncr Napthoyl-CoA reductase Morris et al. (2014) 

nmsA Naphthyl-2-methyl-succinate synthase von Netzer et al. (2013) 

 

Sieradzki et al. (2021) and others have employed stable isotope probing to identify aerobic naphthalene 

degraders based on incorporation of 13C labeled PAHs into 16S rRNA genes (Singleton et al., 2005; Rochman et 

al., 2017). Carboxylation as the initial step in anaerobic naphthalene and phenanthrene biotransformation has 

allowed use of reverse stable isotope labeling (incorporation of 13C bicarbonate) rather than use of 13C labeled 

PAH for assessment of anaerobic PAH transformation (Dong et al., 2017; Zhang et al., 2021a,b). Carbon and 

hydrogen CSIA fractionation has also been successfully applied with anaerobic 2-methylnaphthalene 

biodegradation (Marozava et al., 2019). 

3.5 Summary of Review Considerations 

The literature review detailed in the previous sections highlights the current state of knowledge of biodegradation 

for reviewed COCs ranges from moderately characterized biodegradation mechanisms with limited laboratory-

scale testing to well-characterized biodegradation mechanisms with extensive laboratory testing. Based on the 

results of the literature review, a comparative summary of each COC is presented in Table 10. 

The results of the literature can be summarized as follows: 

 Are biodegradation or biotransformation pathways established? 

 With the exception of high molecular weight (HMW) PAHs, the biodegradation or biotransformation 

pathways are well-established for chlorinated ethenes, PCBs and low molecular weight (LMW) PAHs. 

 Have sediment and/or porewater laboratory-scale biodegradation studies been documented? 

 With the exception of HMW PAHs, laboratory-scale biodegradation studies have been documented for 

each class of COCs. Lab-scale studies with chlorinated ethenes and LMW PAHs are the most well-

documented of the COCs considered here. 

 Are MBTs established to monitor lab-scale and potentially field-scale biodegradation or 

biotransformation in sediments? 

 MBTs to assess biodegradation of chlorinated ethenes have been established for the reviewed COCs. 

While MBTs for chlorinated ethene biodegradation are well-established and have been applied at the 

lab-scale using sediments, there is uncertainty of the specificity of the individual MBT to assess 

individual biodegradation mechanisms of PCBs and PAHs. 
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Table 10: Comparative summary of the results of the literature review for each COC. The shading presents the 
interpreted state of knowledge or extent of documented studies. Green shading indicates a mature state of 
knowledge or numerous documented studies. Orange indicates an established, but comparatively less mature state 
of knowledge and few documented studies. Light red indicates limited state of knowledge and limited documented 
studies. Dark red indicates an absence of knowledge, MBTs, or documented studies. 

Criteria 

Biogeochemical 

Conditions 

CVOCs - 

Chlorinated 

Ethenes 

PCBs 

PAHs 

LMW HMW 

Are biodegradation or 

biotransformation 

pathways established? 

Aerobic 
High 

Well-established 
(except for PCE) 

High 
Well-established 

High 
Well-established 

Low 
Few pathways 
characterized / 

established 

Anaerobic High 
Well-established 

High 
Well-established 

High 
Well-established 

Low 
Few pathways 
characterized / 

established 

Have biodegradation 

lab-scale studies been 

documented? 

Aerobic High Medium High Medium 

Anaerobic High Medium Medium Absent 

Are MBTs established to 

monitor lab-scale and 

potentially field-scale 

biodegradation or 

biotransformation in 

sediments? 

Aerobic 

High 
Well-established 
and applied at 

field-scale 

Low 
Limited MBTs 

focused on two 
gene targets 

High 
Well-established 
targets for nahAc 

gene and applied at 
field scale 

Low 

Anaerobic 

High 
Well-established 
and applied at 

field-scale 

Medium 
Further research 

necessary to 
establish 

functional roles 
that these play 

Low-Medium 
MBTs are limited 

(two function gene 
targets) and are an 

active area of 
ongoing research 

Absent 
No MBTs 

available/identified 

 

Overall, the literature review highlighted that the COCs of interest are known to biodegrade in the environment 

under aerobic and anaerobic conditions present in the sediment environment and that a suite of MBTs can be 

utilized to measure and characterize biodegradation processes.  

 

4.0 CONCLUSIONS  

Application of MBTs to contaminated sediment sites can supplement traditional data analyses with empirical 

evidence of biodegradation/biotransformation natural recovery mechanisms to reduce CSM uncertainty and 

support remedial decisions and strategies. MBTs to assess biodegradation/biotransformation processes for key 

sediment COCs including CVOCs, PCBs, and LMW PAHs have been established and applied at laboratory-scale; 

though field-scale application, the number of applications, and maturity of the state of knowledge for each COC 

varies. 
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